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Implementation and demo videos. Our implementation
and demo videos can be found at our project page.

Training details. We train the entire network end-to-end
with losses promoting better flow estimation and final frame
reconstruction. Specifically, we first have an L1 reconstruc-
tion loss Lrec and a perceptual loss Lper between the syn-
thesized image Ît and It:

Lrec = L1(It, Ît) (1)

Lper = L1(ϕ(It), ϕ(Ît)) (2)

where ϕ(·) concatenates feature map activations from a pre-
trained VGG19 network [6].

We then adopt another L1 reconstruction loss Lb
rec pro-

moting better frame reconstruction directly from the warped
deep features x′′

i and x′′
j after these pass through our gener-

ator network G. This helped predict warped deep features
such that they lead to generating frames as close as possi-
ble to ground-truth in the first place. We also empirically
observed faster convergence with this loss:

Lb
rec = L1(It, G(x′′

i )) + L1(It, G(x′′
j )) (3)

Further, we have warping loss Lm
warp and Lo

warp by mea-
suring the L1 reconstruction error between the target image
and the source images Ii and Ij after being warped through
the motion field Fm

t→i (Equations 2 and 3 in the main paper)
and also the optical flow F o

t→i:

Lm
warp = L1(It,W(Ii, F

m
t→i))+

L1(It,W(Ij , F
m
t→j))

(4)

Lo
warp = L1(It,W(W(Ii, F

m
t→i), F

o
t→i))+

L1(It,W(W(Ij , F
m
t→j), F

o
t→j))

(5)

where W(I, F ) applies backward warping flow F on image
I .

Finally, we follow [2] and include a smoothness loss for
both mesh flow and optical flow:

Category Keywords
greeting hey, hi, hello
counting one, two, three, first, second, third
direction east, west, north, south, back, front, away,

here, around
sentiment crazy, incredible, surprising, screaming

action walk, drive, ride, enter, open, attach, take, move
relative more, less, much, few
others called

Table 1. Dictionary of common keywords.

Lsm = ||∇Fm
t→i||1 + ||∇Fm

t→j ||1+ (6)

||∇F o
t→i||1 + ||∇F o

t→j ||1 (7)

The overall loss L is defined as the weighted sum of
all losses described above, then averaged over all training
frames.

L = Lrec + λpLper + λbLb
rec+

λmLm
warp + λoLo

warp + λsLsm

(8)

The weights have been set empirically based on [2] as λp =
0.01, λb = 0.25, λm = 0.25, λo = 0.25, λs = 0.01.

To train the entire model, we first train the mesh flow es-
timator network with Lm

warp as a “warming” stage. Then we
load a pre-trained optical flow model from [2]. Finally, we
train the entire network end-to-end with the loss mentioned
above. The network weights are optimized with Adam op-
timizer using PyTorch. The learning rate is set to 10−4 and
weight decay to 10−6. The training process is performed on
4 Nvidia GeForce 1080Ti GPUs.

We show the detailed training procedure for our numer-
ical evaluation. For the Personal story dataset, we train the
model on each individual speaker video and report the eval-
uation numbers accordingly. The compared methods are
trained on each speaker video for a fair comparison. For
the TED-talks dataset, we train a single model on the entire
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Figure 1. Pose-aware video blending results for target blending weights α ∈ (0, 1). Top row: synthesized in-between frames with
blended human gestures for different blending weights. Bottom rows: intermediate mesh flows, optical flows and visibility maps results
for corresponding blending weights.

training split of the dataset. We evaluate our model gener-
alization on the testing split which contains unseen speak-
ers. The comparison methods are also trained on multiple
speakers on this dataset for a fair comparison.

The TED-Talks dataset proposed by [5] contains a list of
Youtube video URL links, corresponding frame indices, and
cropped areas with auto-detected upper bodies of speakers
inside. They are not directly helpful to create the audio-
driven reenacted video results. This is because 1) the orig-
inal dataset only contains very short video clips, e.g., with
a duration of a few seconds, which are not sufficient to cre-
ate rich video motion graphs; 2) the frames in the original
dataset are processed to 384 × 384 resolution by cropping
and scaling the upper body of the speaker from a zoomed-
out full body frame. As a result, the frames do not have high
resolution and high quality. In this case, we use such dataset
for numerical evaluation and easier reproduction purpose.
To achieve high resolution and high quality audio-driven
reenacted TED-talks videos shown on our project page, we
use the original full Youtube videos. We manually select the
frames with the zoomed-in camera where the upper body of
the speaker appears at high resolution and high quality (see
examples in our HTML files). The selected frames have
sufficient length to create reasonable video motion graphs.
Finally we fine-tune the model on these frames from each
specific speaker and generate reenacted video results given
test audios.

Pose-aware video blending network results. Fig. 1
shows output images from the video blending network for
different blending weights, along with results from our in-
termediate stages.

Dictionary of common keywords. Referential gestures,
especially iconic and metaphoric gestures, have strong cor-
relations with the transcript [3, 7]. They usually appear to-
gether with certain keywords, such as action verbs, con-
crete objects, abstract concepts, and relative quantities to
co-express the speech content [1]. We gather a few fre-
quently used such keywords co-occurring with referential
gestures in our speaker videos, as shown in Table. 1.

Network architecture details. The spatial encoder net-
work Es takes as input the RGB image Ii, the foreground
mask Imask, and an image containing the rendered skeleton
Iskel representing the SMPL pose parameters. Fig. 2 shows
an example of these input images.

We show our Spatial Encoder network structure for gen-
erating the mesh flow warping field in Table 2. In this table,
the left column indicates the spatial resolution of the feature
map output. The ResBlock down block is a 2-strided convo-
lutional layer with a 3 × 3 kernel followed by two residual
blocks. The ResBlock up block is a nearest-neighbor up-
sampling with a scale of 2, followed by a a 3 × 3 convo-
lutional layer and then two residual blocks. The term Skip
means skip connection that concatenates the feature maps of
an encoding layer and decoding layer with the same spatial
resolution. For Personal story dataset, the input and gener-



ated images are in 512×512 resolution, while for TED-talks
dataset, the image resolution is 384× 384.

The Mesh Flow Estimator and Image Generator network
follows the structure of the Spatial Encoder network (see
Table 2), but the input and output number of channels are
different. For the Mesh Flow Estimator network, the num-
ber of input feature channel is 13 and output feature channel
is 2. For the Image Generator network, the number of in-
put feature channel is 19 and output feature channel is 3.
Besides, the Image Generator network uses in the end a
tanh(·) activation to regularize the image values between
[0, 1].

Audio-driven Beam search details. We initialize a beam
search [4] procedure in the video motion graph to find K
plausible paths matching the target speech audio segments.
We set K to 20. The beam search initializes K paths starting
with K random nodes as the first frame a0 for the target
audio, then expands in a breadth-first-search manner to find
paths ending at a target graph node whose audio feature
matches the target audio feature at the endpoint of the first
segment a1, associated with either an activated audio onset
or the same non-empty keyword feature. Note that there
can be multiple target graph nodes sharing the same audio
feature with a1.

During the beam search, all the explored paths are sorted
based on a path transition cost, plus a path duration cost.
The path transition cost is defined as the sum of node dis-
tances between all consecutive nodes m,n along the path,
i.e.

∑
m,n (dfeat(m,n) + dimg(m,n)). The cost of syn-

thetic transitions are always higher than natural ones. Thus,
the path cost prevents using implausible paths with too
many synthetic transitions.

When a path reaches a target graph node, we check its
duration. Due to the sparsity of the graph, there may not be
any path matching exactly the target audio segment length
Li. Still, the path length should be similar to Li, other-
wise one would need to accelerate or decelerate the path
too much to adjust it to the exact length, leading to un-
naturally fast or slow gestures. We only accept paths with
duration L′

s ∈ [0.9Ls, 1.1Ls] since these can be slightly
adjusted, e.g. re-sampled, to match the target segment du-
ration. For the above range, we observed that the motion
still looks natural. Nevertheless, we also add a path dura-
tion cost |1−L′

s/Ls| to favor paths during beam search with
duration closer to the target duration.

When the speech audio is silent, the searched motion
graph paths go through nodes without audio onset features,
which are often the frames with rest poses.

After processing the first segment a0 → a1, we start an-
other beam search for the next segment a1 → a2. Here,
the path expansion starts with the last node of the K paths
discovered from previous iteration. The expansion contin-
ues with the same search procedure as above. In order, the

(a) (b) (c)

Figure 2. An example of inputs to our spatial encoder network (a)
input image frame, (b) corresponding foreground human mask and
(c) rendered skeleton image.

searches run iteratively for all the rest segments as → as+1,
s ∈ [1, S] while always keeping the most plausible K paths.
All searched K paths can be used to generate various plau-
sible results for the same target speech audio (see demo
videos on our project page). The best path is picked in our
experiments.

User study details. We provide here more details about
the user study.

We have a pool of 381 queries (127 videos from each
method × 3 comparison pairs). For each query, we show
two videos in parallel randomly placed at left/right posi-
tions. The participants are asked which speaker’s gestures
are more consistent with the speech audio and vote for one
of the two choices: “left animation”, “right animation”.
Fig. 3 shows the webpage layout used in our questionnaires.
The layout shows two video results to the participants, a
question on the bottom and two choices (“left”/“right”). To
enable the selection of either choice, the users must watch
both videos until the end. We also explicitly instruct them to
focus on the speakers’ hand gestures and ignore the masked
facial area.

Our questionnaires also include a similar page layout
showing tutorial examples in the beginning. The tutorial
shows a pair of videos with clear differences: one video is
from ground-truth in which the speaker’s gestures are nat-
urally consistent with the audio; the other video is a failure
case, which shows gestures that are inconsistent with au-
dio at some places. For these tutorial cases only, we let
the participants pick an answer first and then let them know
whether their answer is correct or wrong and explain why.

We also adapt a user validation check to filter out unreli-
able MTurkers. Specifically, after the tutorial, our question-
naires showed 10 queries in a random order. 3 of the queries
were repeated twice (i.e., we had 7 unique queries per ques-
tionnaire). We randomly flipped the two videos each time to
detect unreliable participants giving inconsistent answers.
We filter out unreliable MTurk participants who give dif-
ferent answers to two (or more) of the repeated queries in
the questionnaire or took less than 5 minutes to complete it.
Each participant was allowed to answer one questionnaire



Figure 3. User study questionnaire page.

512× 512
Input RGB image, foreground mask image,

and rendered skeleton image
256× 256 ResBlock down (16 + 2) → 32
128× 128 ResBlock down 32 → 64
64× 64 ResBlock down 64 → 128
32× 32 ResBlock down 128 → 256
16× 16 ResBlock down 256 → 512
8× 8 ResBlock down 512 → 512
8× 8 ResBlock up 512 → 512
16× 16 Skip + ResBlock up (512 + 512) → 512
32× 32 Skip + ResBlock up (512 + 512) → 256
64× 64 Skip + ResBlock up (256 + 256) → 128
128× 128 Skip + ResBlock up (128 + 128) → 64
256× 256 Skip + ResBlock up (64 + 64) → 32
512× 512 Skip + ResBlock up (32 + 32) → 16

Table 2. Spatial Encoder network structure.

maximum to ensure participant diversity. We collected an-
swers from 113 reliable participants for our user study. We
paid $1 per questionnaire. All comparison outcomes are
statistically significant using a z-test (p<.05).

Importance of the reference video. The key idea of us-
ing reference video is that it provides personalized gestures.
Directly animating a single portrait is hard since it is not
clear what are the ‘correct’ gestures. There are many ap-
plications of our setup. For example, in video production,
there is a need to add or remove sentences from existing
clips. In online education, different video lessons can be
created based on a reference video.

Runtime speed Generating a video from a 15 second in-
put audio and a 2 minute reference video takes about 43
seconds in total. Here is the breakdown: (a) 8 seconds are

used for audio-driven search to find graph paths in the video
motion graph, (b) 35 seconds are used for synthesizing all
transitions. Specifically, for a 15 second input audio, there
are maximum of 4 synthetic transitions in our examples,
with 8 blended frames created per transition. For blending,
obtaining the initial mesh flow from human fitting takes 1
second, then synthesizing each blended frame takes 0.1 sec-
onds measured on a single Tesla V100 GPU.

Personal data / human subjects. The Personal story
dataset contains 7 videos with 6 different speakers (5 male,
1 female). The number of frames ranges from 4465 to
19176 (148 to 639 seconds). We collected it under the per-
mission from each speaker to include frames, clips and full
video in the paper submission. We also used the TED-talks
dataset from the previous work [5]. The perceptual user
study is collected with the approval of IRB.
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