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Figure 1. Given an input reference video of a speaker (left), our method reenacts it with gestures matching a target speech audio (right). The
video is synthesized by re-assembling clips from the reference video and blending the inconsistent boundaries with a pose-aware neural
network such that the synthesized video is coherent visually and consistent with both the rhythm and content of the target audio.

Abstract
Human speech is often accompanied by body gestures

including arm and hand gestures. We present a method
that reenacts a high-quality video with gestures matching
a target speech audio. The key idea of our method is to
split and re-assemble clips from a reference video through
a novel video motion graph encoding valid transitions
between clips. To seamlessly connect different clips in the
reenactment, we propose a pose-aware video blending
network which synthesizes video frames around the stitched
frames between two clips. Moreover, we developed an
audio-based gesture searching algorithm to find the optimal
order of the reenacted frames. Our system generates reen-
actments that are consistent with both the audio rhythms
and the speech content. We evaluate our synthesized
video quality quantitatively, qualitatively, and with user
studies, demonstrating that our method produces videos of
much higher quality and consistency with the target audio
compared to previous work and baselines. Our project page
https://github.com/yzhou359/vid-reenact
includes code and data.

1. Introduction

Gesture is a key visual component for human speech
communication [31]. It enhances the expressiveness of hu-
man performance and helps the audience to better compre-
hend the speech content [19]. Given the progress in talk-
ing head generation [17, 65, 83, 85], synthesizing plausible

gesture videos becomes increasingly important for applica-
tions such as digital voice assistants [47] and photo-realistic
virtual avatars [24, 83]. In this paper, we propose an audio-
driven gesture reenactment system that synthesizes speaker-
specific human speech video from a target audio clip and a
single reference speech video (Figure 1).

Unlike lip motions with specific phoneme-to-viseme
mappings [20, 63, 86] or facial expressions mostly corre-
sponding to low-frequency sentimental signals [67], ges-
tures exhibit complex relationships with not only acoustics
but also semantics of the audio [45]. Therefore, it is nontriv-
ial to find a direct cross-modal mapping from audio wave-
form to gesture videos, even for the same speaker. To bridge
the gap between audio and video, previous methods [24,40]
predict body pose (i.e., a jointed skeleton) as an intermedi-
ate low dimensional representation to drive the video syn-
thesis. However, they dissect the problem into two indepen-
dent modules (audio-to-pose, and pose-to-video) and pro-
duce results suffering from noticeable artifacts, e.g. dis-
torted body parts and blurred appearance.

Our method introduces a video reenactment method that
is able to synthesize high-resolution, high-quality speech
gesture videos directly in the video domain by cutting, re-
assembling, and blending clips from a single input refer-
ence video. The process is driven by a novel video motion
graph, inspired by 3D motion graphs used in character an-
imation [4, 34]. The graph nodes represent frames in the
reference video, and edges encode possible transitions be-
tween them. We discover possible valid transitions between



frames, and also discover paths in the graph leading to the
generation of a new video such that the re-enacted gestures
are coherent and consistent with both the audio rhythms and
speech content of the target audio.

Direct playback on the discovered paths for an output
video can cause temporal inconsistency at the boundary of
two disjoint raw frames. Existing frame blending methods
cannot easily solve this problem, especially with fast mov-
ing and highly deformed human poses. Therefore, we also
propose a novel human pose-aware video blending network
to smoothly blend frames around the temporally inconsis-
tent boundaries to produce naturally-looking video transi-
tions. By doing so, we successfully transform the problem
of audio-driven gesture reenactment into the search for valid
paths that best match the given audio.

Our path discovery algorithm is motivated by psycho-
logical studies on co-speech gesture analysis. The studies
show co-speech gestures can be categorized into rhythmic
gestures and referential gestures [45]. While rhythmic ges-
tures are well synchronized with audio onsets [9, 78], ref-
erential gestures mostly co-occur with certain phrases, e.g.
a greeting gesture of hand-waving appears when a speaker
says ‘hello‘ or ‘hi‘ [8,15]. We analyze the speech of the ref-
erence video and detect the audio onset peaks [18] as well
as a set of keywords from its transcript [74] as audio fea-
tures added to the corresponding nodes on the video motion
graph. Given the extracted audio onset peaks and keywords
from a new audio clip, the optimal paths that best match
audio features are used to drive our video synthesis.

Our contributions are summarized as follows:

• a new system that creates high-quality human speech
videos with realistic gestures driven by audio only,

• a novel video motion graph that preserves the video
realism and gesture subtleties,

• a pose-aware video blending neural network that syn-
thesizes smooth transitions of two disjoint reference
video clips along graph paths, and

• an audio-based search algorithm that drives the video
synthesis to match the synthesized gesture frames with
both the audio rhythms and the speech content.

2. Related Work
Our method is related to previous work on motion

graphs, audio-driven 3D speech animation, and in particular
human video synthesis, and video frame blending.

Motion Graph. The idea of motion graphs was first pro-
posed in [4,34] to create realistic and controllable animation
based on a pre-captured motion. It is broadly used in gener-
ating 3D character animations [6, 26, 35, 37, 46, 51, 55, 58].
However, these approaches only work on 3D human skele-
ton representations and cannot be directly applied to video

animation in image space. While blending re-assembled
motions requires interpolating 3D joint positions in char-
acter animation, in our case blending requires synthesizing
whole image frames to create a coherent video.

[1, 56] propose motion graph in pixel space and solve
this issue by de-ghosting [59] and gradient-domain com-
positing [66] based on pixel warping. However, these ap-
proaches focus on simple periodical scene scenarios, e.g.
pendulum, waterfalls, etc. and cannot work on complex hu-
man motions. [23, 38, 75, 80] generate controllable human
action videos by retrieving and warping nearest candidate
frames. However, they require additional motion capture
resources such as physical markers, multi-view or RGB-
D cameras. [12, 13, 28] also introduce human video syn-
thesis based on reconstruction of human meshes from pre-
captured multi-view camera datasets. However, these meth-
ods are not suitable for monocular camera videos.

Audio-driven Speech Animation of 3D models. Sev-
eral approaches for audio-driven speech animation of lips,
heads, and body gestures have been proposed in the recent
years [17, 24, 40, 65, 83, 85]. [2, 3, 36, 77] propose learning
methods to solve the multimodal mapping from audio to 3D
human gestures. They represent synthesized gestures with
3D skeletons, which can drive a 3D character model. Yet,
these methods are not able to synthesize video of a target
speaker unless they are also provided with a detailed, tex-
tured, and rigged 3D model for that speaker. When it is not
available, their demonstrated results lack photorealism.

Human Video Synthesis. [24,40] translate predicted skele-
tal gesture motions to photo-realistic speaker videos via re-
cent neural image translation approaches [30, 33, 69, 70].
However, neural image translation is not artifact-free: dis-
connected moving object parts, as well as incoherent texture
appearance are known issues in video generation [69]. Due
to the large number of parameters in their network, these
methods also require large datasets for training. Few-shot
solutions [68,79] do not have such dataset requirements, yet
they suffer from various artifacts, in particular for human
pose synthesis, such as blurred appearance and distorted
body parts [68]. [41, 42, 60, 71, 72] fit human body model
or/and texture parameters to a training video to improve the
appearance of body shapes and texture at test time. Yet,
inaccurate fitting easily results in artifacts and lose of sub-
tleties, especially in the presence of loose clothing and de-
tailed body parts, e.g. fingers. [61,62,82] warped the learnt
feature of each body to generate the target pose frame based
on estimated optical flows. They focused on large pose
changes and texture hallucination, but may fail in blending
two given frames naturally. Our method follows a largely
different approach from all the above prior work: instead of
per-frame neural translation, the video of a speaker is gen-
erated by re-assembling clips from a short, few minute long
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Figure 2. System overview. The reference video is first encoded into a directed graph where nodes represent video frames and audio
features, and edges represent transitions. The transitions include original ones between consecutive reference frames, and synthetic ones
between disjoint frames. Given a unseen target audio at test time, a beam search algorithm finds plausible playback paths such that gestures
best match the target speech audio. Synthetic transitions along disjoint frames are neurally blended to achieve temporal consistency.

reference video. Since most of the frames originate from
the reference video, the synthesized video preserves ges-
ture realism as well as appearance subtleties. As a result,
the problem is simplified to blending video frames. Our
neural blending network focuses on solving this particular
task, instead of generating all frames from scratch.

Video Frame Blending. The choice of the frame blend-
ing strategy significantly impacts the quality of the video
generated from re-assembling clips. Naive weighted aver-
aging of video frames easily result in ghost effects [48, 56].
More advanced frame interpolation methods [25,32,43,49]
based on optical flow estimation [5, 29, 64] have been pro-
posed to synthesize intermediate frames between two con-
secutive frames, in particular for slow motion videos. How-
ever, such methods fail if two frames are very different from
each other and the optical flow estimation is not accurate
enough. They work for generic content, yet do not con-
sider human motion as a prior for our task. Our method
uses a human pose-aware neural network for frame blending
that produces significantly better quality video compared to
prior such work, as demonstrated in our experiments.

3. Method

Overview. The goal of our method is to synthesize a new
video for a reference speaker given a target speech audio
from the same or different speaker. Our video synthesis
is guided by a novel video motion graph created from an
input reference video of the speaker (Sec. 3.1). The video
motion graph is a directed graph that encodes how the refer-
ence video may be split and re-assembled in different graph
paths (see Fig. 2 for an illustration). The graph node rep-
resentations are defined as the raw reference video frames
and corresponding audio features. The edges are defined
as the transitions between frames, including natural transi-
tions in the input video and synthetic transitions connecting
disjoint clips. Synthetic transitions are introduced to expand
the graph connectivity and enable nonlinear video playback.

However, a direct nonlinear playback along synthetic
transitions does not guarantee smooth video rendering due
to the abrupt changes of disjoint frames in image space.
Thus, we design a novel pose-aware video blending net-
work to re-render and interpolate neighboring frames re-
quired by the synthetic transitions (Sec. 3.2). We develop
an audio-based searching method to find optimal paths in
the video motion graph that best match the target audio fea-
tures both rhythmically and semantically (Sec. 3.3). To gen-
erate new videos, we retrieve the raw input video frames at
natural transitions and synthesize neural blended frames at
synthetic transitions.

3.1. Video Motion Graph

The key idea of our video motion graph is to create synthetic
transitions based on the similarity of the speaker’s pose in
the reference video frames. Our pose similarity metric re-
lies on 3D space and image space cues. Given a reference
video, our first step is to extract pose parameters θ of the
SMPL model [44] for all frames with an off-the-shelf mo-
tion capture method [73]. We further smooth the pose pa-
rameters with [14] to promote temporally coherent results.

3D space pose similarity. Based on the pose parameters,
we compute the 3D positions in world space for all joints
via forward kinematics. For each pair of frames ∀(m,n),
we evaluate pose dissimilarity dfeat(m,n) based on the Eu-
clidean distance of their position and velocity of all joints.

Image space pose similarity. To obtain the pose simi-
larity in image space, for each frame m, we project the
fitted 3D SMPL human mesh onto image space using
known camera parameters from [73], and mark the mesh
surface area which is visible on image after projection
as Sm. Then for each pair of frames (m,n), the im-
age space dissimilarity is estimated by the Intersection-
over-Union (IoU) between their common visible surface ar-
eas: dimg(m,n) = 1− (Sm ∩ Sn)/(Sm ∪ Sn). The lower
dimg(m,n) is, the higher the IoU, thus larger overlap exists



in the surface area in two meshes, indicating higher pose
similarity in terms of image rendering.

Based on these two distance measurements, we cre-
ate graph synthetic transitions between any pair of refer-
ence video frames (nodes in our graph) if their distance
dfeat(m,n) and dimg(m,n) are below predefined thresh-
olds (both distance for natural transitions are defined as
0). Here we follow [76] to set the thresholds as the aver-
age distance between close frames (m,m + l) in the refer-
ence video. Larger frame offset l results in higher thresh-
olds, thus more synthetic transitions, increasing the possi-
ble number of paths in the motion graph. This also results
in larger computational cost for the path search algorithm
of Sec. 3.3. Our experiments use l = 4 which practically
achieves a balance between computational cost and number
of available paths in the graph.

3.2. Pose-aware Video Blending

A mere playback of connected frames at synthetic transi-
tions easily results in noticeable jittering artifacts (see direct
playback in Fig. 3(a) grey dashed path and Fig. 3(b) third
column). To solve this problem, we synthesize blended
frames to replace original frames around a small temporal
neighborhood of a synthetic transition so that the video can
smoothly transit from the first sequence to the other (see
Fig. 3(a) solid black path and Fig. 3(b) last column). For
a synthetic transition connecting frames m,n, we define
the neighborhood using the frame range [m − k,m] and
[n, n+ k] with a neighborhood size k.

We designed a pose-aware video blending network to
synthesize frames within the above neighborhood. Given
two frames with indices i, j (where i ∈ [m − k,m]
and j ∈ [n, n + k]) and their corresponding raw RGB
image representations Ii and Ij ∈ RH×W×3 from the
reference video, the network synthesizes each blended
frame in the neighborhood with a target blended weight
α ∈ [0, 1/K, 2/K, ..., 1], where K = 2k.

As a first step, we use the blending weight to estimate
the SMPL pose parameter θt for a blended frame t as:
θt = (1−α)θi+αθj , where θi and θj are the SMPL pose
parameters captured from two input frames respectively.

Our network processes the images Ii, Ij , the body fore-
ground masks, and the pose parameter θi,θj ,θt. Process-
ing takes place in two stages. The first stage warps fore-
ground human body image features based on a 3D mo-
tion field computed from vertex displacements of the fitted
SMPL meshes. The second stage further refines the warping
by computing the residual optical flow between the warped
image features produced by the first stage, and the optical
flow from the rest of the image (i.e., background). Finally,
an image translation network transforms the refined warped
image features to the image It representing the target output
frame t. The network architecture is shown in Fig. 4.
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(a) Illustration of pose-aware blended playback.
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(b) Our blended playback generates smoother transition.

Figure 3. Compared to direct playback along synthetic transi-
tions which have severe horizontal shift for body poses and abrupt
change in hand rotations (see dashed lines and circles in (b)), our
blending strategy generates natural transitions between clips.

Mesh Flow Stage. The first stage has two parallel
streams, each producing image deep feature maps encoding
the warping for the input images Ii and Ij . To produce these
features, we first compute an initial 3D motion field, which
we refer to as initial “mesh flow”, from the SMPL body
mesh displacements between the two frames. To this end,
we first find the body mesh vertex positions vi,vj ,vt from
the SMPL pose parameters θi,θj ,θt respectively. Then
we obtain the initial mesh flow F init

t→i and F init
t→j as the dis-

placement of the corresponding mesh vertices vt − vi and
vt − vj ∈ RN×3 respectively. We note that we only con-
sider here the displacements from visible vertices found via
perspective projection onto image plane. These displace-
ments are projected and rasterized as image-space motion
field RN×3 → RH×W×2. Since the vertex sampling does
not match the image resolution, the resulting flow fields are
rather sparse. Thus, we diffuse them with a Gaussian kernel
with σ set to 8 in our experiments.

These initial motion fields are far from perfect. This is
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Figure 4. Pose-aware neural blending network architecture. Two source frames are encoded into deep feature maps and then warped based
on the predicted flows from two stages: a 3D mesh-based flow stage for coarse feature map alignment, followed by an optical flow-based
stage further refining the warping. Finally, the warped features are blended with predicted visibility masks to generate the target frame.

because the boundaries of the projected mesh often do not
exactly align with the boundaries of the human body in the
input frames. Thus, we refine these fields with a neural
module. The module has two streams, each refining the cor-
responding motion field for frame i and j. The first stream
processes as inputs the RGB image Ii, the foreground mask
Imask, and an image containing the rendered skeleton Iskel
representing the SMPL pose parameters. It then encodes
them into an image deep feature map xi:

xi = Es(Ii, Imask, Iskel;ws) (1)

where ws are learnable weights. Similarly, the second
stream produces an image deep feature map xj for frame j.
The two streams share the same network based on 8 stacked
CNN residual blocks [10]. More details are provided in the
supplementary material.

We then estimate the refined motion fields through an-
other network Em,

Fm
t→i = Em(xi, F

init
t→i ;wm), (2)

Fm
t→j = Em(xj , F

init
t→j ;wm). (3)

where wm are learnable weights. This network is designed
based on UNet [52]. More details are provided in the sup-
plementary material. We then backwards warp the above
image feature maps with the above motion fields to obtain
the warped deep features x′

i and x′
j .

Optical Flow Stage. Synthesizing the final target frame
directly from the two warped feature maps x′

i and x′
j suffers

from ghost effect (Fig. 5). This is because the motion field
calculated in the previous stage is based on the SMPL model
which ignores details such as textures on clothing.

Our second stage aims to further warp the deep feature
maps x′

i and x′
j based on optical flow computed through-

out the image including the background. At this stage, the

warped features already represent bodies that are roughly
aligned. We found that an off-the-shelf frame interpolation
network based on optical flow [32] can reproduce the miss-
ing pixel-level details and remedy the ghost effect. The net-
work predicts optical flow F o

t→i and F o
t→j to further warp

the features from x′
i and x′

j to x′′
i and x′′

j respectively. It
also estimates soft visibility maps [32] Vt→i and Vt→j used
for blending to obtain a deep feature map for frame t:

x′′
t = (1− α)Vt→i ⊙ x′′

i + αVt→j ⊙ x′′
j . (4)

Finally, we take as input the above blended deep feature
map to synthesize the target image It. This is performed
with a generator network G following a UNet image trans-
lation network architecture [85]: Ît = G(x′′

t ;wg), where
wg are learnable weights. More details and output exam-
ples are provided in the supplementary material.

Training. To train our pose-aware video blending net-
work, we sample triplets of frames in the reference video.
Given a target frame e.g., frame t, we randomly sample
two other nearby frames with indices t − k0 and t + k1,
k0, k1 ∈ [1, 8] to form triplets. The corresponding blending
weight α is computed as k0/(k0 + k1). We train the entire
network end-to-end with losses defined to better estimate
the flows and reconstruct the final image. More details are
provided in the supplementary material.

3.3. Audio-based Search

Given a speech audio at test time, we develop a graph
search algorithm to find plausible paths along which ges-
tures match the speech audio both rhythmically and seman-
tically. Previous studies have shown that speech gestures
can be classified into two categories: 1) referential ges-
tures that appear together with specific, meaningful key-
words, and 2) rhythmic gestures which respond to the audio
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Figure 5. A ghost effect example. Left: two input frames. Top-
right: ghost effect from using mesh flow only. Bottom-right:
sharp features with further warping by optical flow.

prosody features [45]. More specifically, the key stroke of
a rhythmic gesture appear at the same time as (or within a
very short of period of) an audio onset within a phonemic
clause [21]. To find precise gestures on the right timings, or
frame indices, we define a pair of audio features for input
speech: audio onset feature and keyword feature. The audio
frame indices match the video frame rate.

Audio onset and keyword feature. We define the audio
onset feature as a binary value indicating the activation of an
audio onset for each frame detected with a standard audio
processing algorithm [7]. To extract keyword features, we
first use the Microsoft Azure speech-to-text engine [74] to
convert the input audio into transcripts with corresponding
start and end time for each word. We create a dictionary of
common words for referential gestures, which we call key-
words (see supplementary for a list). If a keyword appears
at a frame (or node), we set its keyword feature to that word.
Otherwise, we simply set it to empty (no keyword).

Target speech audio segmentation. We split the target
speech audio into segments starting and ending with the
frames where the audio onset or keyword feature is acti-
vated. Let {as}Ss=1 be the frame indices of such frames,
where S is their total number. Segments are represented as
as → as+1, and their duration are Ls = as+1 − as (num-
ber of frames). We also add two extra endpoints a0 = 1
and aS+1 = Nt indicating the first and last frame of the
target audio respectively to form the complete segment list,
i.e. as → as+1, s = 0, 1, .., S.

Beam search. We utilize the beam search [54] in the
video motion graph to find K plausible paths matching the
target speech audio segments. The beam search initializes
K paths starting with K random nodes as the first frame a0
for the target audio. Next, we apply breadth-first search to
find path segments ending on nodes whose feature matches

the target audio segment feature at frame a1. We continue
with the same search procedure as above to find full graph
paths matching the rest of the target segments as → as+1,
s = 1, .., S iteratively. All searched K paths can be used to
generate various plausible results for the same target speech
audio. Detailed search criteria and result variants can be
found in the supplementary material and our project page.

Video synthesis. We generate a video along with the final
path in the motion graph discovered by the beam search ex-
ecutions, and use the blending network to handle synthetic
transitions (see Fig. 3 for an example). As explained above,
for each synthesized video segment corresponding to target
audio segment as → as+1, we adjust its speed to match
the target duration. Finally, we post-process our result by
adopting [50] to synchronize the lips of the speaker to match
the corresponding speech audio.

4. Results and Evaluation
Dataset. We evaluate our neural blending network and
produced audio-driven reenactment results on two datasets.

Personal Story Dataset. Since our approach works for
speaker-specific speech gesture reenactment, we collected
seven speech videos. Each speaker is asked to tell a personal
story in front of a static camera, either standing or sitting.
Speakers are encouraged to use their gestures while telling
the stories. The length of the video varies between 2-10
minutes depending on the story. We split each video into
90%/10% for training and testing purpose.

TED-talks dataset [62]. We also demonstrate the gener-
alization of our neural blending network on the TED-talks
dataset. It contains 1265 talk speech videos with 393 unique
speakers. Each video contains the upper part of speaker
body and the video length ranges from 2 to 60 seconds. We
use the same train/test split proposed in [62]. We evaluated
the generalization ability of our model on this dataset since
the test speakers are unseen during training.

4.1. Video Blending Evaluation

We firstly numerically evaluate the proposed video
blending network on both dataset. Given two frames t − k
and t + k in the test split of each video, we synthesize
blended frames with the blending weight α = 0.5 and com-
pare its quality with the ground-truth frame t. All the com-
pared frames are multiplied with ground-truth human masks
to compare the foreground human results only.

We compare our method with the state-of-the-art frame
interpolation methods FeatureFlow [25] and SuperSlMo
[32], as well as human pose-based image synthesis meth-
ods vUnet [22]. We also compare with methods based on
the pix2pix [70] backbone: the EBDance [16] method for
speaker-specific Personal story dataset and the Fewshot-
vid2vid [68] for the speaker-varying TED-talks dataset. For
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Figure 6. Comparison of blended frame synthesis using different methods. Note the natural look of details such as fingers in our method.

Input Ii Synthesized blended frames to smoothly transit from frame Ii to Ij Input Ij
Figure 7. Blended frames for transition edges of our video motion graph on TED-talks dataset (see demo videos on our project page).

the pose-based image synthesis methods, we interpolate hu-
man skeleton by averaging joint positions. We retrain all
the comparison methods on our dataset for a fair compari-
son. We also evaluate two network alternatives: Ours w/
mesh which only uses mesh-based warping flows and Ours
w/ optical which only uses optical flows.

Image Quality. We evaluate the quality of synthesized
images via four common metrics: Image Error (IE) - av-
erage absolute pixel difference between two images; Peak
Signal-to-Noise Ratio (PSNR) and LPIPS [81].

Table 1 shows our model consistently outperforms all
comparison methods for speaker-specific videos on Per-
sonal story dataset. It also demonstrates the generalization
of our model for unseen speakers on TED-talks dataset.
Fig. 6 shows examples of synthesized frames by different
methods. In the top example, the inputs are two frames with
larger gesture difference. The frame interpolation meth-
ods [25, 32] cannot estimate the flow field, and thus result
in broken and blurred hand results. The pose-based im-
age synthesis methods [16, 22] preserve hand structures but
have artifacts around fingers and clothing. Ours achieves
the best quality for both hands and clothing. The lower

example shows frames with smaller gesture differences.
[16,22,32] preserve hands better but still suffer from broken
and blurred texture. Ours generates clear and sharp results.

Video Quality. To evaluate the quality of the generated
video, we adopt the metric, MOVIE [57] index, to evalu-
ate the video distortion in spatio-temporal aspects. We also
follow [69] to evaluate the visual quality of the video and
temporal consistency with Fréchet Inception Distance (FID)
scores [27]. We use the pre-trained video recognition CNN
model to get features from synthesized video clips [11]. Ta-
ble 1 relative columns show our method can achieve the best
video quality in the temporal domain. It demonstrates that
the synthesized blended frames seamlessly connect reen-
acted frames with much less temporal artifacts. In Fig.7,
we show detailed blended frames on the selected transi-
tion edges of our video motion graph from the TED-talks
dataset. We provide additional synthesized clips to show-
case blending results on our project page.

4.2. Audio-driven Reenactment Results

Given a reference video from speaker A and a target au-
dio clip randomly from another speaker B, we can reenact



Personal story dataset TED-talks dataset
Method IE↓ PSNR↑ LPIPS↓ MOVIE↓ FID↓ IE↓ PSNR↑ LPIPS↓ MOVIE↓ FID↓

FeatureFlow [25] 1.18 33.5 0.015 0.22 19.1 5.2 19.7 0.267 1.29 33.6
SuperSlMo [32] 1.04 35.0 0.012 0.17 15.4 1.18 28.6 0.052 0.50 12.6

vUnet [22] 1.20 33.6 0.013 0.19 15.6 1.19 28.8 0.058 0.52 14.0
EBDance [16] 1.75 30.7 0.020 0.43 20.5 - - - - -

Fewshot-vid2vid [68] - - - - - 10.7 15.1 0.159 1.06 21.5
Ours w/ mesh 0.87 35.2 0.009 0.14 15.1 1.36 27.9 0.072 0.64 11.5

Ours w/ optical 0.97 34.6 0.009 0.16 13.2 1.25 28.2 0.069 0.57 11.9
Ours 0.76 36.1 0.007 0.13 13.0 0.93 30.7 0.040 0.43 11.8

Table 1. Image and video quality assessment for Personal story dataset and TED-talks dataset.

GT Ours-full Ours-no-search

70%59% 41% 61%

30%
39%

Figure 8. Pairwise comparison results from our user study. The
comparison of Ours-full against Ours-no-search shows the effec-
tiveness of the proposed audio-based search algorithm.

the reference video to generate a new speech video with
A’s appearance and B’s voice based on our pipeline. The
reenacted results on both the Personal story dataset and the
TED-talks dataset are provided on the project page.

User Study. To further quantitatively evaluate the consis-
tency of such reenacted videos to target speech audio, we
perform a perceptual user study on the reenacted videos on
the Personal story dataset. We generate 127 such videos
of 25 seconds in length. Each of them contains expres-
sive speech gestures for every speaker in the dataset. The
study was conducted via the Amazon Mechanical Turk ser-
vice. We compare the results from our full system (Ours-
full) against ground-truth (GT), which are original refer-
ence video clips of speaker B, and results from a base-
line system (Ours-no-search), which randomly finds paths
along video motion graphs without audio-based search.

We design the user study questionnaire by providing a
list of queries involving pairwise comparisons of results
from two out of three methods mentioned above. The par-
ticipants were asked to choose which gestures in those two
results are more consistent with the speech audio. Detailed
setup to prevent biases and invalid answers can be found
in the supplementary material. Finally, 1130 valid choices
from 113 valid participants are gathered. We plot the statis-
tics in Fig. 8. The preference (61% vs. 39%) of Ours-full
over Ours-no-search shows the effectiveness of the audio-
based search algorithm. Although no audio guidance is
used, 30% votes received by Ours-no-search against GT
also suggest our video motion graph and frame blending ap-
proach is able to generate high-quality and realistic videos.

The relative higher votes (41%) given to Ours-full against
GT demonstrates our full system generates better though
not perfect gesture videos that are coherent with the audio.

5. Conclusion and Future Work

We propose a novel system based on video motion graphs
to generate new videos that best preserve high image syn-
thesis quality and speaker gesture motion subtleties. To
seamlessly reenact disjoint frames from the input video,
we introduce a neural pose-aware video blending method
to smoothly blend inconsistent transition frames. We show
the superior performance of the proposed system compar-
ing to the state-of-the-art methods and baselines via both
numerical experiments and perceptual user studies.

Limitations. We use a pre-defined common keyword dic-
tionary for keyword features, which may fail on uncom-
mon individual vocabulary. Using richer audio features
learnt through data might help with accurate gesture match-
ing. There is an inevitable trade-off between the quality
and variety of synthesized animations: increasing the graph
edge density can increase the transition variety, yet may re-
trieve frames harder to blend. The proposed video blending
network can blend the foreground human poses and slight
background changes, but it fails on dramatically changed
backgrounds (see the supplementary for examples).

Future work. Neural blending shows its strengths on
reenacting human videos in the pose-aware embedding
space. We believe our hybrid framework of video motion
graph and neural reenactment is a promising direction for
high-quality controllable digital human animations.

Potential negative societal impacts. Our approach en-
ables synthesis of talking people. This offers the ability of
creating fake videos for malicious purposes. Detecting deep
fakes videos [39, 53, 84] is an active area of research.
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